御制历象考成 - 第 12 页/共 145 页
限相减余甲丙边为太阳
距北极度故用甲乙丙三
角形有甲乙二角及乙丙
边求甲丙边以甲角六十
度为对所知之角其正
八百六十六万零二百五
十四为一率乙角九十八
度一十七分一十二秒为
对所求之角其正九百
八十九万五千五百九十
三为二率乙丙五十八度
为所知之边其正八百
四十八万零四百八十一
为三率求得四率九百六
十九万零一百七十六为
所求甲丙边之正检表
得七十五度四十二分零
一秒即甲丙弧之度与九
十度相减余一十四度一
十七分五十九秒即太阳
距赤道北之纬度也此法
用边角相比例与直线三
角形同但直线三角形以
角之正与边相比【见数理精
蕴第十七卷】此以角之正与
边之正相比其比例之
理一也又以正弧之理明
之试将甲乙弧引长至丁
自丙角作丙丁垂弧则成
甲丁丙乙丁丙两正弧三
角形先求乙丁丙形丁角
正【即半径】为一率乙角正
为二率乙丙正为三
率丙丁正为四率此第
一比例也次求甲丁丙形
甲角正为一率丁角正
【即半径】为二率丙丁正
为三率甲丙正为四率
此第二比例也然第二比
例之二率三率即第一比
例之一率四率而二率三
率相乘与一率四率相乘
之数等故用第一比例之
二率三率而用第二比例
之一率即得第二比例之
四率此有对角求对边之
法也
设如太阳距赤道北一十四度一十七分五十九秒测得髙弧三十二度地平经度偏西八十一度四十二分四十八秒求系何时刻
甲乙丙三角形甲为北极
乙为天顶丙为太阳丙壬
为太阳距赤道北一十四
度一十七分五十九秒甲
丙即为太阳距北极七十
五度四十二分零一秒丙
癸为太阳髙三十二度乙
丙即为太阳距天顶五十
八度丁癸为地平经度偏
西八十一度四十二分四
十八秒癸己为九十八度
一十七分一十二秒即乙
角庚壬为太阳距午正赤
道度即甲角故用甲乙丙
三角形有乙角及甲丙乙
丙二边求甲角以甲丙七
十五度四十二分零一秒
为对所知之边其正九
百六十九万零一百七十
六为一率乙丙五十八度
为对所求之边其正八
百四十八万零四百八十
一为二率乙角九十八度
一十七分一十二秒为所
知之角其正九百八十
九万五千五百九十三为
三率求得四率八百六十
六万零二百五十四为所
求甲角之正检表得六
十度即甲角度以六十度
变得二时从午正初刻后
计之【因偏西故为午正后】为申正初
刻也此有对边求对角之
法也
设如北极出地四十度申正初刻测得太阳髙三十二度求太阳距赤道纬度及地平经度各几何
甲乙丙三角形甲为北极
乙为天顶丙为太阳甲己
为北极出地四十度甲乙
即为北极距天顶五十度
庚壬为申正初刻距午正
赤道六十度即甲角丙癸
为太阳髙三十二度乙丙
即为太阳距天顶五十八
度丙壬为太阳距赤道纬
度甲丙为其余丁癸为地
平经度即乙角之外角【甲乙
丙形之乙角当癸己弧其癸乙丁外角即当丁癸弧】故用甲乙丙三角形有甲
角及甲乙乙丙二边求甲
丙边及乙角乃自乙角作
乙丁垂弧分为甲乙丁丙
乙丁两正弧三角形先求
甲乙丁形以丁角正即