五礼通考 - 第 307 页/共 431 页
求近时白道与髙弧交角
求近时髙下差
求近时东西差
求食甚视行 以用时东西差倍之减近时东西差余为视行【江氏永曰此为求定时距分比例设也假令用时东西差三十分近时东西差三十一分则近时比用时多一分矣夫月距日此时三十分而多一分则由近时至定时月行三十分又必多一分并前为二分其数恒倍故于用时东西差先倍之然后减之而以其余为视行如用时东西差三十分倍之六十分减去近时三十一分余二十九分为视行如近时差分少于用时差分亦倍而减之而视行大于用时差分】求食甚定时 以视行化秒为一率近时距分化秒为二率用时东西差化秒为三率求得四率为秒以时分收之为定时距分【江氏永曰视行化秒与用时东西差化秒相较之差犹近时距分与定时距分相较之差也】以加减食甚用时得食甚定时【加减与近时距分同 江氏永曰加减法见前求食甚近时条】 按食甚时刻须求时差而定则食分之深浅亦必因视差而变故复因定时求视差以定食分
求定时春秋分距午赤道度 以食甚定时变赤道度求之余与用时之法同后诸条仿此但皆用定时所当度数立算
求定时春秋分距午黄道度
求定时午位黄赤距纬
求定时黄道与子午圈交角
求定时午位黄道宫度
求定时午位黄道髙弧
求定时黄平象限距午度分
求定时黄平象限宫度
求定时月距限 置太阳黄道经度加减近时东西差【依定时距分加减号】为定时太隂黄道经度余同前【江氏永曰定时太隂黄道经度与定时黄平象限宫度相减为定时月距限度】
求定时限距地髙
求定时太隂髙弧
求定时黄道与髙弧交角
求定时白道与髙弧交角
求定时髙下差
求定时东西差
求定时南北差【江氏永曰前未得定时不必求南北差至此然后求之以定食分】 以本天半径为一率定时白道髙弧交角之正为二率定时髙下差之正为三率求得四率为正检表得定时南北差【江氏永曰东西南北差皆因月有距限度从髙下差而生其理与其形象已解见求用时东西差条凡四率皆用正者角与边相对也半径即直角之正此直角对髙下差白道髙弧交角对南北差故如此求之】
求食甚视纬 依月食求食甚距纬法推之得实纬【江氏永曰以本天半径为一率黄白大距之正为二率实交周之正为三率求得四率为正检表得实纬按食甚定时有东西差则太隂距交亦有进退而求实纬必仍用原算之实交周正为三率实交周者实朔用时大隂距交之白道度也至以定时南北差加减之为视纬则距交进退之度亦在其中矣】以定时南北差加减之为食甚视纬【白平象限在天顶南者实纬在黄道南则加而视纬仍为南在黄道北则减而视纬仍为北若实纬在北而南北差大于实纬则反减而视纬变为南白平象限在天顶北者实纬在黄道北则加而视纬仍为北在黄道南则减而视纬仍为南若南北差大而反减者视纬即变南为北 江氏永曰交周初宫五宫为北六宫十一宫为南反减者以实纬减南北差也人在地面视月恒降而下月在天顶北则降下于北实纬多者反少少者反多故加减相反】
求太阳半径 以太阳距地为一率【江氏永曰求太阳距地见月食求地影半径条】太阳实半径为二率本天半径为三率求得四率为正检表得太阳半径【江氏永曰旧表最小者十五分最大者十五分三十秒】求太隂半径【详月食】
求食分 以太阳全径为一率十分为二率【江氏永曰分太阳全径为十分但以直径线上截之未论圆容之积也月食亦然】太阳太隂两半径并内减食甚视纬余为三率求得四率即食分【江氏永曰一分又分六十秒视纬之余亦当化分为秒求得四率以分收之其余为秒】
求初亏复圆用时 以食甚视纬之余为一率并径【太阳太隂两半径并】之余为二率半径千万为三率求得四率为余检表得初亏复圆距弧【江氏永曰初亏至食甚之弧食甚至复圆之弧也用余之理解见月食】又以月距日实行化秒为一率小时化秒为二率初亏复圆距弧化秒为三率求得四率为秒以时分收之为初亏复圆距时以加减食甚定时得初亏复圆用时【减得初亏加得复圆】
求初亏春秋分距午赤道度 以初亏用时变赤道度求之余如前法后诸条仿此但皆用初亏所当度数立算
求初亏春秋分距午黄道度
求初亏午位黄赤距纬
求初亏黄道与子午圈交角
求初亏午位黄道宫度
求初亏午位黄道髙弧
求初亏黄平象限距午度分
求初亏黄平象宫度
求初亏月距限 置太阳黄道经度减初亏复圆距弧又加减定时东西差【依定时距分加减号】得初亏太隂黄道经度余同前【江氏永曰太隂黄道经度大于黄平象限者为限东小者为限西】
求初亏限距地髙
求初亏太隂髙弧
求初亏黄道与髙弧交角
求初亏白道与髙弧交角
求初亏髙下差
求初亏东西差
东初亏南北差
求初亏视行 以初亏东西差与定时东西差相减并【初亏食甚同限则减初亏限东食甚限西则并 江氏永曰食近限则有变限日月左旋故初亏限东食甚限西复圆仿此】为差分以加减初亏复圆距弧为视行【相减为差分者食在限东初亏东西差大则减小则加食在限西反是相并为差分者恒减 江氏永曰初亏视食甚却而西其加减宜如此】
求初亏定时 以初亏视行化秒为一率初亏复圆距时化秒为二率初亏复圆距弧化秒为三率求得四率为秒以时分收之为初亏距分【江氏永曰有余为秒】以减食甚定时得初亏定时【江氏永曰初亏复圆用时已近宻矣而视差顷刻有变故复以两东西差求定时为最宻】
求复圆春秋分距午赤道度 以复圆用时变赤道度求之余如前法后诸条仿此但皆用复圆所当度数立算
求复圆春秋分距午黄道度
求复圆午位黄赤距纬
求复圆黄道与子午圈交角
求复圆午位黄道宫度
求复圆午位黄道髙弧
求复圆午位黄平象限度分
求复圆黄平象限宫度
求复圆月距限 置太阳黄道经度加初亏复圆距弧又加定时东西差【依定时距分加减号】得复圆太隂黄道经度余前同
求复圆限距地髙
求复圆太隂髙弧
求复圆黄道与髙弧交角
求复圆白道与髙弧交角
求复圆髙下差
求复圆东西差
求复圆南北差
求复圆视行 以复圆东西差与定时东西差相减并为差分【复圆食甚同限则减食甚限东复圆限西则并】以加减初亏复圆距弧为视行【相减为差分者食在限东复圆东西差大则加小则减食在限西反是相并为差分者则恒减江氏永曰复圆视食甚进而东则加减宜如此】
求复圆定时 以复圆视行化秒为一率初亏复圆距时化秒为二率初亏复圆距弧化秒为三率求得四率为秒以时分收之为复圆距分以加食甚定时得复圆定时
求食限总时 以初亏距时与复圆距时相并即得食限总时
求太阳黄赤宿度【与月食同】
求初亏复圆定交角 求得初亏复圆各视纬【与食甚法同江氏永曰置食甚交周以初亏复圆距弧加减之得初亏复圆交周乃以本天半径为一率黄白大距之正为二率初亏复圆交角之正各为三率各求得四率为正检表得初亏复圆实纬各以初亏复圆南北差加减之为视纬加减法详食甚视纬 实交周加减升度差即为食甚交周求法见月食食甚时刻条此用食甚交周者初亏复圆距弧皆黄道上度分故也】以求纬差角【江氏永曰太阳太隂两半径之正为一率初亏复圆视纬之正各为二率半径千万为三率求得四率为正检表得初亏复圆纬差角】各与黄道髙弧交角相加减为初亏及复圆之定交角法与月食同【江氏永曰太阳体上作十字交角限东在左下限西在右下而月亏日皆从右复圆皆从左其以纬差角加减交角也限东视其右上之对角初亏纬南白道在下对角加大纬北白道在上对角减小限西视其右下之本角初亏纬南白道在下本角减小纬北白道在上本角加大复圆加减反此】求初亏复圆方向 食在限东者初亏复圆定交角在四十五度以内初亏上偏右复圆下偏左四十五度以外初亏右偏上复圆左偏下适足九十度初亏正右复圆正左过九十度初亏右偏下复圆左偏上食在限西者初亏复圆定交角在四十五度以内初亏下偏右复圆上偏左四十五度以外初亏右偏下复圆左偏上适足九十度初亏正右复圆正左过九十度初亏右偏上复圆左偏下【京师北极髙四十度黄平象限在天顶南故其方向如此若北极髙二三十度以下黄平象限有时在天顶北则方向与此相反 江氏永曰日体不可分东西而可分左右其方向与月食相反】求带食 以初亏复圆距时化秒为一率初亏复圆视行化秒为二率【带食在食甚前用初亏视行带食在食甚后用复圆视行】带食距时【以食甚定时如月食法求之 江氏永曰初亏或食甚在日出前者为带食出地食甚或复圆在日入后者为带食入地带食出地者用本日日出时分带食入地者用本日日入时分与食甚时分相减余为带食距时】化秒为三率求得四率为秒以度分收之为带食距弧【江氏永曰地平距食甚之弧也带食出地者初亏未食甚食甚防在地平下食甚未复圆食甚防在地平上带食入地者初亏未食甚食甚防在地平上食甚未复圆食甚防在地平下】又以半径千万为一率带食距弧之余为二率食甚视纬之余为三率求得四率为余检表得对食两心相距【江氏永曰正当地平时日月两心相距也食甚时视纬即两心相距因带食有距弧则两心相距必大于视纬别成斜弧带食距弧与视纬相交成直角而两心相距之弧与直角对求法当以一半径三余为比例也】乃以太阳全径为一率十分为二率并径内减对食两心相距余为三率求得四率为带食分秒【江氏永曰求带食论本法当如此而日月近地平恒有青蒙气掩映蒙气能升卑为髙日未出地或已入地而犹在地平上又能展小为大如此则加时早晚食分多少有与原算不合者矣不必带食即正食时近地平在蒙气内者亦然蒙气髙卑厚薄各随其方须积候之久以意消息又或随日随时有游气谓之本气虽近天顶亦然故日食三差之外犹有三差一曰青蒙气差一曰青蒙径差一曰本气径差此非法所能御故不论也月食亦然】
求各省日食时刻及分 以京师食甚用时按各省东西偏度加减之得各省食甚用时【江氏永曰偏东一度迟时之四分偏西一度早时之四分】乃按各省北极髙度如法推近时定时食分及初亏复圆定时即得【江氏永曰推算止及各省治细论之各府州县亦不同也】求各省日食方向 以各省黄道髙弧交角及初亏复圆视纬如法求之即得
蕙田案以上推日食法
右推步法中
五礼通考卷一百九十六
<经部,礼类,通礼之属,五礼通考>
钦定四库全书
五礼通考卷一百九十七
刑部尚书秦蕙田撰
嘉礼六十八
观象授时
会典推木火土三星法
土星用数
土星每日平行一百二十○秒六○二二五五一【江氏永曰土星距地最逺行最迟算土木火三星平行之法用前后两测取其距恒星之度分等距太阳之逺近左右亦等乃计其前后相距中积若干时日及星行满次轮若干周即可得其平行之率新法算书载古测定二万一千五百五十一日又十分日之三土星行次轮五十七周置中积日分为实星行次轮周数五十七为法除之得周率三百七十八日零一百分日之九分二九八二乃以毎周三百六十度为实周率三百七十八日零为法除之得五十七分零七秒四十二防四十一纎四十四忽三十三芒为毎日土星距太阳之行与每日太阳平行五十九分零八秒一十九防四十九纎五十一忽三十九芒相减余二分零三十六防零八纎零七忽零六芒为毎日土星平行经度凡星平行者本轮心平行于本天也】
最髙每日平行十分秒之二又一九五八○三
【江氏永曰诸星皆有本轮即有最髙最髙即有行度犹太阳之最卑行太隂之月孛行也其行右旋】
正交每日平行十分秒之一又一四六七二八
【江氏永曰诸星各有本道与黄道交正交者自南而交入于北也交行左旋】
本天半径一千万
【江氏永曰各本天大小极不等半径恒设一千万者整数便算也欲得其距地之数以太阳距地髙卑之中数与次轮半径较而可知如太阳距地一千一百四十一地半径而土星次轮一百零四万有竒则本天半径比本阳本天半径约大十倍弱也木火本天仿此】
本轮半径八十六万五千五百八十七
均轮半径二十九万六千四百一十三
【江氏永曰本轮之心在本天均轮之心在本轮本轮左旋均轮右旋均轮半径比本轮半径三之一而稍强】
次轮半径一百○四万二千六百
【江氏永曰次轮所以载星而右旋其顶合日其底冲日其心在均轮上次轮原与太阳本天等大因星之本天甚大故其半径仅当本天半径十之一有竒】
本道与黄道交角二度三十一分
【江氏永曰犹黄道与赤道白道与黄道有距度也诸交角仿此】
土星平行应七宫二十三度十九分四十四秒五十五防