律吕阐微 - 第 2 页/共 13 页

朱载堉曰上党秬黍佳者纵累八十一枚斜累九十枚横累百枚皆与大泉九枚相合然此佳黍亦自难得求得此等佳黍然后可用若或不满九枚钱之径者慎勿误用厯代造律而致乐声焦急其失坐在黍不佳也载堉中黍辨疑曰古上党郡今山西潞安府是也境内产五色黍其黒色黍复有数种软黍堪酿酒者名秬硬黍堪炊饭者名穄一稃内二颗黍名秠律家所用惟秬而已穄与秠弗堪用或误用之非也古云秬黍中者盖谓防选中用之黍非谓中号中等之黍俗语选物曰某物中某物不中此中亦非指中等也古之遗语岂不然乎或曰中读去声谓中式也其义亦通诗曰诞降嘉种维秬维秠又曰实坚实好实颖实栗既用一嘉字其义已括尽坚好颖栗不过形容其嘉而已则知异常者方为嘉种也且秬之为言巨细之巨也闻其名则其形可想见矣盖谓头等大号者为佳非以次等中号者为佳也古人稼穑况又异常今之稼穑未及古人若选大黍庶近乎中若用中黍则失之小隋志宋儒论之当矣不论古今槩用中黍非也夫黄钟之律生于尺而尺乃生于黍者也黍大则尺长而由是黄钟之声遂浊黍小则尺短而由是黄钟之声遂清夫黄钟宫音也最长最浊是其本音则黍之最大者是乃真秬黍耳刘歆荀朂王朴之流皆不知此理而泥于汉志中黍之文遂致所累之尺短所造之乐哀非中和之声矣此不可不辨也为今之计且从蔡氏之说多截竹管权拟黄钟复用人声与管相较声是而黍非则易以大黍大之而益大至于大不得斯则黍理已尽若管内犹不满乃管之非真而当从黍也若非证之以人声则黍未免失之小若非忖之以黍数则管未免过乎大人声管黍互相校正于理极精古之神瞽考中声之遗法大抵如此程子所谓以上下声考之则中声可定矣总而言之宁择大黍迁就人声切忌人声迁就中黍不可复蹈刘荀王氏之故辙耳   又累黍详说曰纵黍累者名曰律尺以九为法横黍累者名曰度尺以十为法二种之度尺数虽异二种之律分剂则同昔人误谓九寸乃九十分是以纵累则管太长容黍却有余横累则管太短容黍却不足皆不能合千二百之说盖惑于汉志之说也此说创于何瑭而臣父深然之古来无此议论盖自我朝为始而律吕精义之所由作也或曰九分为寸原为三分损益设也今既不用三分损益犹用九分为寸何也答曰黄钟九寸空围九分皆取法于纵黍阳数古人造律之初意也故三分损益之法可废而九分为寸之説不可废也凡欲造律先求古钱次求真黍后求美竹古钱洛阳多有不难得也然须多得择取好者可也一二枚钱不足凭据惟真黍颇难得中式者乃真耳   又曰律家拣黍一法虽名为宻若筛取中黍其实为最疎茍无格式大小几何惟云中者尤非定论自汉以来至于今日所谓中者正乃小者也惟极大者庶几中者耳若欲拣择中式之黍须将格式预先议定新法用铜叶或鐡叶大小如钱中凿一孔状类黍形先于多多黍内拣取一黍长依纵黍尺之一分广依横黍尺之一分置于二种尺上令黍与尺全合将黍纳于孔中令孔与黍全合然后将别黍一一纳孔中观其松者合格式可用也松者名为小不能容者名为大如是选一般者千二百粒实于管内不足者名为小有余者名为大不用大者小者惟用其中者耳千二百黍适重三钱然或新陈曝润再称未必相同定须以重三钱为凖上党境内地土肥处产黍尤佳非羊头山黍可及也   按载堉言累黍拣黍之法至详宻矣然量黍之法究竟无定式古人言千二百黍实其龠举成数约畧之辞耳未必无数粒之赢朒也其量也将投黍聴其自满乎抑必须撼动乎聴其自满中多罅隙非法也撼动则书又未明言也且量物之理投之轻与投之重则松有不同撼动少与撼动多则松又不同总之黍非宻实之物难以取凖如尺度已善矣黍式已合矣量之未必适符千二百之数则又生其疑惑是宜有别法变通之详见四卷量律新法   古钱别议   载堉言造律先求古钱次求真黍汉之大泉与契刀错刀之圆环累九枚为九寸唐之开元钱累十枚为十寸皆是黄钟之尺度大泉与二刀今时已难得开元钱固多轮郭不无蚀毁择其大者用之可也又有说焉我朝铸钱型模制度当时亦必有所取法尝取顺治通寳康熙通寳雍正通寳与载堉书所图大泉校之正相符又取乾隆通寳与载堉书所图开元钱校之亦正相符惟取京师所铸背面两字皆 清书而轮郭完好者用之则今钱亦即古钱矣是亦可为用钱定尺之一助   律寸别议   载堉书考覈既精详刻印亦工致所载明初通行寳钞格式包括三代之尺取其格式黒边外齐制为商尺取商尺八寸制为夏尺即黄钟律尺所考校寸分又有泉刀诸器且明载晋以后误用王莽之货泉为尺致律短而乐声髙则律之寸分不难定矣兹更有一说焉许氏说文言周制寸咫尺寻常仭皆以人体为法大戴礼及家语制言篇皆云布指知寸布手知尺舒肘知寻则人身固有自然之尺寸矣史言禹以声为律身为度不必圣人即常人固亦有声中律身中度者也考工记言人长八尺中人之长也所谓布指知寸者中指中节两横纹间为一寸也横纹当中屈处有二上一纹为小屈处其寸短即周尺之一寸医家所谓同身寸以此量人孔穴而施鍼灸者也下一纹为大屈处其寸长盖与黄钟九寸之寸相符虽人手不皆同用左手指节取其不短不长符乎古今钱文之径者定以为寸九倍为尺亦足以见人身有律度之自然近取即得是或一道也或曰宋崇寕间方士魏汉津尝进声律身度之说请帝指定律其说近于谀且诞今复踵其说乎曰汉津之说非此之谓也彼谓左手中指三节为君指裁为宫管第四指三节为臣指裁为商管第五指三节为物指裁为羽管请帝三指合为黄钟九寸其说谬妄无理当时主乐事者为刘昺亦不尽用汉津之说苐以帝中指三节为三寸作大晟乐今惟取中节为寸以与古钱相参证则大异于魏刘之说矣【按朱子深衣度用指尺注云中指中节为寸】   又按聂崇义三礼图有黍尺指尺其指尺引投壶记云筹室中五扶注云铺四指曰扶一指案一寸又公羊传曰肤寸而合何休云侧手为肤案指为寸肤扶音义同家语布指知寸者谓此此姑备一说然铺四指上狭而下广恐难取凖四寸也   律吕阐微卷一   钦定四库全书   律吕阐微卷二   婺源 江永 撰   律率   从来言律者皆云黄钟九寸既得九寸用三分损一益一以生十一律其法似巧妙一若天地生成有此法与数者洎生至仲吕不能复得黄钟说者曰律吕之数徃而不返夫律吕效法天地者也天地之气今岁节气既终来岁节气即续无丝毫之间断独律吕徃而不返天地岂留其有憾乎有谓仲吕极不生者淮南子刘安之说也有谓仲吕后犹生六十律强立之名自执始至南事者京房之说也有谓仲吕所生为变律且有变律子声者杜佑之说也三家之说皆非是独朱载堉因防氏为量有内方尺而圆其外之文悟出天地以方圆相函而自然之数出其中皆以句股乘除开方之法求之由倍律而正律由正律而半律皆有真率真数疏宻以渐而差每一律与三分损益所得者微强而不甚相逺其相生也可隔八可相连可左旋而顺亦可右旋而逆仲吕与黄钟如母子之相随应钟与黄钟黄钟与大吕如兄弟之相比夫妇之相偶皆一气相聨无丝毫之间断因律管长短推出管体厚薄与空围大小外周内周外径内径平幂积实皆方圆相函自然之真数此数千年未泄之秘载堉始发之虽起伶伦州鸠师旷之徒见之亦当叹其妙絶今载其说更推本于图书发明理数之所以然使此理昭晰无疑千万世言律学者更无可凿智翻案之理惟其算周径幂积所用之宻率犹有未真确者俟律体篇详之   载堉之推律亦因其舅祖何氏辨刘歆班固九寸外加一寸为尺之谬又以十分之法解史记生钟分始知律原从十起先有体而后有用遂因方内圆外之文悟方圆相函之理倍律二尺正律一尺半律五寸皆以十为率也倘一矢口即曰黄钟九寸虽有微妙理数隠于方圆相函之中亦无由生其悟矣   律数精微载堉深通算学故能啓悟乗除开方不惮烦劳推至二十余位皆从艰苦得之宋儒言格物穷理此一项工夫欠缺者多矣   推十二倍律正律之真率   朱载堉曰律家三分损其二三分益其一厯家四分度之一四分日之一与夫方则直五斜七圆则周三径一等率皆举大畧而言之耳非精义也新法算律与方圆皆用句股术其法本诸周礼防氏为量内方尺而圆其外夫内方尺而圆其外则圆径与方斜同知方之斜即知圆之径矣度本起于黄钟之长则黄钟之长即度法一尺命平方一尺为黄钟之率【按防氏之方尺自是周家之尺耳非即黄钟之尺也因一尺之数同故命之以为黄钟之率】东西十寸为句自乘得百寸为句幂【按幂方眼也音覔俗或作幂音莫】南北十寸为股自乘得百寸为股幂相并共得二百寸为幂【按句股求术句股各自乘并之为幂开方得斜】乃置幂为实开平方法除之【按开平方法初商为大平方次商以后迭加两亷一隅以除实】得一尺四寸一分四厘二毫一丝三忽五微六纎二三七三○九五○四八八○一六八九为方之斜即圆之径亦即蕤賔倍律之率【按圆内方尺其幂百寸圆外方二尺其幂四百寸方斜圆径之幂二百得内方之倍外方之半蕤賔为午律犹一岁夏至在前后冬至之间所以应蕤賔者其幂得黄钟倍律之半故也既得蕤賔遂可求南吕得南吕遂可求应钟以应钟为法遂可求诸律其机阕要妙在先得蕤賔自然之理数千古其谁知之】以句十寸乘之【按内方十寸当为根数也】得平方积一百四十一寸四十二分一十三厘五十六毫二十三丝七十三忽○九五○四八八○一六八九为实开平方法除之得一尺一寸八分九厘二毫○七忽一微一纎五○○二七二一○六六七一七五即南吕倍律之率仍以句十寸乘之【一尺进为百寸】又以股十寸乘之【百寸进为千寸】得立方积一千一百八十九寸二百○七分一百一十五厘○○二毫七百二十一丝○六十六忽七一七五为实开立方法除之【按开立方法初商自乘再乘为大立方次商以后与前商乘为平亷又乘为长亷迭加三平亷三长亷一隅以除实】得一尺○五分九厘四毫六丝三忽○九纎四三五九二九五二六四五六一八二五【立方之方根也】即应钟倍律之率【按南吕至应钟隔无射一律以立方积求立方根得之理数甚竒】盖十二律黄钟为始应钟为终终而复始循环无端此自然真理犹贞后元生坤尽复来也是故各律皆以黄钟正数十寸乘之为实皆以应钟倍数十寸○五分九厘四毫六丝三忽○九纎四三五九二九五二六四五六一八二五为法除之即得其次律也安有徃而不返之理哉旧法徃而不返者盖由三分损益算术不精之所致也是故新法不用三分损益别造宻率其详如左   按载堉谓旧法徃而不返由三分损益算术不精之所致愚谓古人亦非算术不精也九九八十一之数始于三管子有起五音凡首先主一而三之四开以合九九之说伶州鸠有纪之以三平之以六成于十二之说老子有道生一一生二二生三三生万物之说汉人有太极元气函三为一之说始动于子参之于丑以至参之于亥为应钟得十七万七千一百四十七之数一若以此为万物终始自然之数矣下生者倍其实三其法上生者四其实三其法黄钟九寸林钟六寸太蔟八寸三律得寸之全无零分汉人遂有黄钟为天统林钟为地统太蔟为人统之说矣其推说愈近理则其信三分损益也愈固恶知此外仍有算律之法哉又以旧法较今法林钟得黄钟三分之二以倍律言之当为一三三三三不尽而新率为一三三四八有竒太蔟得黄钟九分之八倍律当为一七七七七不尽而新率为一七八一七有竒其数与三分损益所得者切近而稍赢安得不以三分损益为自然之数哉至仲吕不能反生黄钟则无如之何矣独淮南子所载诸律之数何承天刘焯算之似欲破三分损益之说载之晋书宋书然而竒零小数半分以下弃之半分已上收之终无确数其黄钟生林钟之法置黄钟八十一分为实以五百乘之得四万○五百分以七百四十九为法除之得五十四分为林钟除实未尽则弃之矣七百四十九者与仲吕正律之长相近以此为法似矣然九之下仍有小数新法黄钟生林钟置黄钟之率十亿为实五亿乘之七亿四千九百一十五万三千五百三十八除之得林钟则以七四九为法除实求林钟者尚未确是以仲吕终不能反生黄钟皆由方圆相函勾股乘除开方一窍未啓故载堉云新法盖二千余年所未有自我朝始诚然也   又曰造率始于黄钟必先求蕤賔者犹冬夏二至也次求夹钟及南吕者犹春秋二分也太极生两仪两仪生四象此之谓也始于黄钟者履端于始也中于蕤賔者举正于中也终于应钟者归余于终也律与厯一道也黄钟为宫蕤賔为中应钟为和此三律者律吕之纲纪也   按载堉言次求夹钟及南吕本书未言求夹钟之法今补之   法曰求得蕤賔倍律之率以句十寸折牛为五寸乘之得平方积七十寸○七十一分○六厘七十八毫一十一丝八十六忽五四七五二四四○○八四四五为实开平方法除之得八寸四分○八毫九丝六忽四一五二五三七一四五四三○三一一二五即夹钟正律之率倍之一六八一七九二八三○五○七四二九○八六○六二二五一为夹钟倍律之率又或以南吕之平方积倍之二八二八四二七二二四七四六一九○ ○九七六○三三七八开平方法除之即夹钟倍律之率【原阙】   积算旁通图【有竒零者无时尽列算多位见开方之妙】   二【本是二尺进作二百寸为实以上文所载应钟倍律之数十寸五分有竒为法除之余律放此】右乃黄钟倍律积算【置黄钟倍律积算进一位为实以应钟倍律积算为法除之得大吕】   一八八七七四八六二五三六三三八六九九三二八三六二六   右乃大吕倍律积算【置大吕倍律积算进一位为实以应钟倍律积算为法除之得太蔟】   一七八一七九七四三六二八○六七八六○九四八○四五二   右乃太蔟倍律积算【置太蔟倍律积算进一位为实以应钟倍律积算为法除之得夹钟】   一六八一七九二八三○五○七四二九○八六○六二二五一   右乃夹钟倍律积算【置夹钟倍律积算进一位为实以应钟倍律积算为法除之得姑洗】   一五八七四○一○五一九六八一九九四七四七五   一七六    ○   右乃姑洗倍律积算【置姑洗倍律积算进一位为实以应钟倍律积算为法除之得仲吕】   一四九八三○七○七六八七六六八一四九八七九九二八一   右乃仲吕倍律积算【置仲吕倍律积算进一位为实以应钟倍律积算为法除之得蕤賔】   一四一四二一三五六二三七三○九五○四八八○一六八九   右乃蕤賔倍律积算【置蕤賔倍律积算进一位为实以应钟倍律积算为法除之得林钟】   一三三四八三九八五四一七○○三四三六四八三○八三二   右乃林钟倍律积算【置林钟倍律积算进一位为实以应钟倍律积算为法除之得夷则】   一二五九九二一○四九八九四八七三一六四七六七二一   右乃夷则倍律积算【置夷则倍律积算进一位为实以应钟倍律积算为法除之得南吕】   一一八九二○七一一五○二七二一○六六七一七五   右乃南吕倍律积算【置南吕倍律积算进一位为实以应钟倍律积算为法除之得无射】   一一二二四六二○四八三○九三七二九八一四三三五三三   右乃无射倍律积算【置无射倍律积算进一位为实以应钟倍律积算为法除之得应钟】   一○五九四六三○九四三五九二九五二六四五六一八二五   右乃应钟倍律积算【置应钟倍律积算进一位为实以应钟倍律积算为法除之得黄钟】   新造密率二种【倍律命寸为兆正律命寸为亿欲初学者知命法之变通云尔】   黄钟之率二十兆【本是二十寸命作二十兆】   大吕之率十八兆八千七百七十四万八千六百二十五亿三千六百三十三万八千六百九十九   太蔟之率十七兆八千一百七十九万七千四百三十六亿二千八百○六万七千八百六十   夹钟之率十六兆八千一百七十九万二千八百三十亿○五千○七十四万二千九百○八   姑洗之率十五兆八千七百四十万○一千○五十一亿九千六百八十一万九千九百四十七   仲吕之率十四兆九千八百三十万○七千○七十六亿八千七百七十六万八千一百四十九   蕤賔之率十四兆一千四百二十一万三千五百六十二亿三千七百三十万○九千五百○四   林钟之率十三兆三千四百八十三万九千八百五十四亿一千七百万○○三千四百三十六   夷则之率十二兆五千九百九十二万一千○四十九亿八千九百四十八万七千三百一十六   南吕之率十一兆八千九百二十万○七千一百一十五亿○○二十七万二千一百○六   无射之率十一兆二千二百四十六万二千○四十八亿三千○九十三万七千二百九十八   应钟之率十兆○五千九百四十六万三千○九十四亿三千五百九十二万九千五百二十六   黄钟之率十亿【本是十寸命作十亿】   大吕之率九亿四千三百八十七万四千三百一十二太蔟之率八亿九千○八十九万八千七百一十八夹钟之率八亿四千○八十九万六千四百一十五姑洗之率七亿九千三百七十万○○五百二十五仲吕之率七亿四千九百一十五万三千五百三十八蕤賔之率七亿○七百一十万○六千七百八十一林钟之率六亿六千七百四十一万九千九百二十七夷则之率六亿二千九百九十六万○五百二十四南吕之率五亿九千四百六十万○三千五百五十七无射之率五亿六千一百二十三万一千○二十四应钟之率五亿二千九百七十三万一千五百四十七补半律之率【本书未推今推之】   黄钟之率五亿【本是五寸命作五亿】   大吕之率四亿七千一百九十三万七千一百五十六太蔟之率四亿四千五百四十四万九千三百五十九夹钟之率四亿二千○四十四万八千二百○七姑洗之率三亿九千六百八十五万○二百六十二仲吕之率三亿七千四百五十七万六千七百六十九蕤賔之率三亿五千三百五十五万三千三百九十林钟之率三亿三千三百七十万○九千九百六十三夷则之率三亿一千四百九十八万○二百六十二南吕之率二亿九千七百三十万○一千七百七十八无射之率二亿八千○六十一万五千五百一十二应钟之率二亿六千四百八十六万五千七百七十三按诸律之率固皆以应钟之率为法求得之而各律自乘有平幂其倍半有自然相应者开列于后【此律自乘之积非空围之面幂】   黄钟倍律之幂折半为蕤賔倍律之幂 蕤賔倍律之幂折半为黄钟正律之幂 黄钟正律之幂折半为蕤賔正律之幂 蕤賔正律之幂折半为黄钟半律之幂黄钟半律之幂折半为蕤宾半律之幂   右子午对冲之例也   大吕倍律之幂折半为林钟倍律之幂 林钟倍律之幂折半为大吕正律之幂 大吕正律之幂折半为林钟正律之幂 林钟正律之幂折半为大吕半律之幂大吕半律之幂折半为林钟半律之幂   右丑未对冲之例也   太蔟倍律之幂折半为夷则倍律之幂 夷则倍律之幂折半为太蔟正律之幂 太蔟正律之幂折半为夷则正律之幂 夷则正律之幂折半为太蔟半律之幂太蔟半律之幂折半为夷则半律之幂   右寅申对冲之例也   夹钟倍律之幂折半为南吕倍律之幂 南吕倍律之幂折半为夹钟正律之幂 夹钟正律之幂折半为南吕正律之幂 南吕正律之幂折半为夹钟半律之幂夹钟半律之幂折半为南吕半律之幂   右卯酉对冲之例也   姑洗倍律之幂折半为无射倍律之幂 无射倍律之幂折半为姑洗正律之幂 姑洗正律之幂折半为无射正律之幂 无射正律之幂折半为姑洗半律之幂姑洗半律之幂折半为无射半律之幂   右辰戌对冲之例也   仲吕倍律之幂折半为应钟倍律之幂 应钟倍律之幂折半为仲吕正律之幂 仲吕正律之幂折半为应钟正律之幂 应钟正律之幂折半为仲吕半律之幂仲吕半律之幂折半为应钟半律之幂   右已亥对衡之例也   已上六例载堉书所未言今推得之此方圆相函内内倍半自然相应之道也律之空围靣幂积实其例亦如此方与方圆与圆其理同也   方圆相函列律图   自有律书以来未有此图天地之秘宻泄于此图观   按载堉之说非图不显作此图以明之方函圆圆又函方皆自然之理即有一定之数列线为律外十二线为倍律中十二线为正律其半律亦有十二在内线愈密不能图只图其一律之疎密自有差次无忽密忽疎之病律之长短皆两斜线界定非由三分损益观此则新旧二法真伪判然矣