测圆海镜分类释术 - 第 2 页/共 10 页
释曰甲从北门东行底勾也乙从坤隅东行大差勾也此以城北半大勾城南全短勾求城径【与边股小差股同法】术曰二行相乘得三万八千四百为实以甲东行二百为从作带从开平方法除之得半径
带从开平方法见一卷
乙出东门直行一十六步甲出北门东行二百步望乙与城叅直问城径
释曰甲行底勾也乙出东门直行□勾也此以城北半大勾城东小余勾求城径
术曰二行相减余一百八十四为底勾□勾较 乙东行自之得二百五十六为□勾筭较自之得三万三千八百五十六减□勾筭得三万三千六百为实倍甲东行得四百为从方作减从开平方法除之
得半径
减从开平方法曰布实于左从于右约初商一百置一于左上为法 置一为隅法以减从方余
三百为下法与上法相乘除实三万余实三千六百 倍隅法得二百为廉法 约次商得二十置一于左次为上法置一为隅法 并廉法共二百二十以减原从余一百八十为下法与上法相乘除实尽
或于初商除实三万讫 于从内再减一百余二百为从方 次商二十于余从内减二十余一百八十为下法亦通
后凡言减从开平方法者俱仿此
乙出东门直行一十六步甲出南门东行七十二步望乙与城相叅直问城径
释曰甲行明勾也乙之直行□勾也此以城南半勾与城东余勾求城径
术曰二行相减余五十六为明勾□勾较自之得三千一百三十六为较筭东门直行自之得二百五十六为□勾筭二筭相减余二千八百八十为平实倍明勾得一百四十四为从作减从 翻法开平方开之得半径
减从翻法开平方曰布实于左从于右约初商得一百 置一于左上为法 置一为隅法以减从方余四十四为下法与上法相乘 应除实四千四百实不满法就于应除数内反减实二千八百八十余一千五百二十为负积 倍初商得二百为廉法 约次商得二十 置一于左次为上法置一为隅法 并廉法共二百二十 从不及
减反减从一百四十四余七十六为下法与上次法相乘除实尽 或于初商反减实二千八百八十余一千五百二十为负积 又以初商一百反减余从四十四余五十六为负从次商二十并负从共七十六为下法亦通后凡言减从翻法开平方者俱仿此
两股求容圆二【凡七条】
乙出南门直行一百三十五步而立甲从城外西北干隅南行六百步望乙与城相叅直问城径
释曰甲从干隅南行通股也乙出南门直行明股也此以城西大股与城南余股求城径【与通勾□勾同】
术曰甲行内减二乙行余三百三十以乘甲行得一十九万八千为实三甲行内减二乙行余一千五百三十为从方作带从开平方法除之得半径【法见一卷】
乙出东门南行三十步甲从干隅南行六百步见之问城径
释曰甲南行为通股乙出东门南行三十步为□股此以西大股与东短股求城径【通勾明勾同法】
术曰二行相乘得一万八千为实以乙南三十为从作带从开平方法除之得半径【法见一卷】
乙居城外东北艮隅南行一百五十步甲从城外西北南行六百步望乙与城叅直问城径
释曰甲南行通股也乙从艮隅南行小差股也此以城西长股与城东短股求城径【与通勾大差勾同法】
术曰二行相乘倍之得一十八万为实相并得七百五十为法除之得全径
甲出西门南行四百八十步而止乙出东门南行三十步望乙与城叅直问城径
释曰甲出西门南行四百八十步边股也乙出东门南行三十步□股也此以城西半股与城东短股求圆径
俗云半梯【与底勾明勾同法】
术曰二行相乘得半径筭平方开之
甲出西门南行四百八十步而立乙从城外东北艮隅南行一百五十步见之问城径
释曰甲南行边股也乙从艮隅南行小差股也此以城西南半股与城东北半股求圆径【与底勾大差勾同法】术曰二行相乘得七万二千为实以甲南行四百八十为从方作带从开平方法除之得半径
带从开平方法见一卷
甲出西门南行四百八十步乙出南门直行一百三十五步相望与城叅直问城径
释曰甲南行边股也乙出南门直行明股也此以城西大半股与城南余股求圆径【底勾□勾同法】
术曰二行相减余自之得一十一万九千○二十五为差筭乙行自之得一万八千二百二十五为明股筭以减差筭余一十○万○八百为实 倍甲行得九百六十为益从作减从开平方法除之得半径【法见前】
乙出东门南行三十步而立甲出南门直行一百三十五步望乙与城叅直问城径
释曰乙出东门南行□股也甲直行明股也此以城中余股与城东小股求圆径【明勾□勾同法】
术曰二行相减余自之得一万一千○二十五为差筭甲直行自之得一万八千二百二十五为明股筭减差筭余七千二百为正实 倍乙行得六十为从方作以从减法开平方法除之得半径
以从减法开平方曰布实于左从于右约初商得一百 置一于左上为法 置一于右下为隅法以从减隅余四十为下法与上法相乘除实四千余三千二百为实 倍隅法得二百为廉法 约次商得二十 置一于左次为上法 置一为隅法 并廉法共二百二十减去从方余一百六十为下法与上次法相乘除实尽后凡言减法开平方者俱仿此
又为添积带从开平方法
初商一百 置一于左上为法 置一于右下为隅法对上法相乘得一万为益实添入积内共一万七千二百为实 置一带从得一百六十为下法与上法相乘除实一万六千余一千二百为实倍隅法得二百为廉法 约次商得二十 置
一于左次为上法置一为隅法 并廉法共二百二十与上次法相乘得四千四百为益实添入余积共五千六百为实置一并廉法从方共二百八十为下法与上次法相乘除实尽
又术明股筭减差筭余七千二百为实六之□股得一百八十为从方作减从翻法开平方法开之得半径减从翻法开平方法见前条
两求容圆三
城南有槐一株城东有栁一株甲出北门东行丙出西门南行甲丙槐栁悉与城相叅直既而甲斜行四百二十五步至槐下丙斜行五百四十四步至栁下问城径
释曰甲斜行向西南至槐树下底也丙斜行向东北至栁树下边也此以边底互测圆径术曰二斜行相减余自之得一万四千一百六十一为差筭甲斜行自之得一十八万○六百二十五为底筭二筭相减余一十六万六千四百六十四为平实 倍边得一千○八十八为从方作带从开平方法开之得一百三十六为平
带从开平方法见一卷
出城南门之东有槐甲出北门东行斜望槐树与城叅直乃斜行二百七十二步至槐下休止东门之南有栁丙出西门南行斜望栁树亦与城相叅直乃斜行五百一十步至栁下休止问城径
释曰槐在南门东七十二步明勾也甲出北门东行二百步望见槐与城相叅直此底勾也斜行至槐下黄长也栁在东门之南三十步□股也丙出西门南行四百八十步望栁与城叅直边股也斜行至栁树下黄广也此以黄长黄广二立法测望术曰半甲斜行自之得一万八千四百九十八为黄广半筭半丙斜行自之得六万五千○二十五为黄长半筭并二行折半自之得一十五万二千八百八十一以二筭减之余六万九千三百六十为实并二行共七百八十二为从 作减从开平方法
开之得一百○二为太虚
减从开平方法见二卷【底勾□勾条】
东门之南有栁南门之东有槐俱不知步甲出东门直行乙出南门直行立定二人相望视槐栁与城相叅直既而甲斜行三十四步至栁下乙斜行一百五十三步至槐下问城径
释曰此明□立法测望甲斜行至栁为□乙斜行至槐为明
术曰二相乘倍得一万○四百○四平方开之得太虚加□即皇极勾加明即皇极股以皇极勾股求之得城径
皇极勾股求容圆见一卷
测圆海镜分类释术卷二
钦定四库全书
测圆海镜分类释术卷三
元 李 冶 撰
明 顾应祥 释术
通勾与别股测望一【凡三条】
圆城不知周径乙从城外西南坤隅南行三百六十步而立甲从城外西北干隅东行三百二十步见之问城径
释曰乙从坤南行大差股也甲从干东行通勾也此以通勾大差股测望通勾为城北大勾大差股为城西南之虚股
术曰二行相乘得一十一万五千二百为实 倍乙行得七百二十为从作减从开平方法除之得全径减从开平方法见二卷
又曰二行相并得六百八十为通以通勾求容圆法求之即得
南门外一百三十五步有树甲从城外西北干隅东行三百二十步见之问城径
释曰此以通勾明股立法树距南门明股也甲之东行通勾也通勾乃城北大勾明股乃城南余股术曰东行自之又以树距南门步乘之得一千三百八十二万四千为立实 倍树距南门步以乘东行步得八万六千四百为从方二为隅算作带从负隅开立方法除之得半径
带从负隅开立方曰布实于左从尾数至首常超二位又以从方约之定首位得一百 置一于左上为法 置一自之隅因得二万为隅法并从方得一十○万六千四百为下法与上法相乘除实一千○六十四万余实三百一十八万四千 三因隅法得六万为方法 三因初商得三百又以隅筭因之得六百为廉法 约次商得二十 置一于左次为上法 置一乘廉法得一万二千置一自之隅因得八百为隅法并方法从方廉隅共一十五万九千二百为下法与上法相乘除实尽
后凡言带从负隅开立方法者俱仿此
乙出东门南行三十步甲从干隅东行三百二十步望乙与城叅直问城径
释曰此以通勾□股测望甲东行通勾也乙出东门南行三十步□股也
术曰二行相乘得九千六百为实 以东行三百二十为从方二为隅算作减从负隅翻法开平方除之得半径
减从负隅翻法开平方曰初商一百 置一于左上为法 置一隅因得二百为隅法以减从方余一百二十为下法与上法相乘除实一万二千实不满法反减实九千六百余二千四百为负积倍余法得四百为廉法次商二十 置一于左次为上法 置一隅因得四十为隅法并廉隅共四百四十减从不足反减从方三百二十余一百二十为下法与上次法相乘除实尽
后凡言带从负隅翻法开平方者俱仿此
底勾与别股测望二
城西门南四百八十步有树出北门东行二百步见之问城径
释曰此底勾边股立法测望西门南四百八十步边股也出北门东行二百步底勾也底勾居城北勾之半边股居城西股之半
术曰二行相乘得九万六千为实 相并得六百八十为从二为隅筭 作负隅减从开平方法除之得半径
负隅减从开平方法见二卷【通勾□勾条】
圆城出北门北行一十五步折而东行二百○八步有树出西门西行八步折而南行四百九十五步见之问城径
释曰此以底勾过步带短股边股过步带短勾立法测望出北门北行为短股折而东为长勾过于底勾出西门西行为短勾折而南为长股过于边股术曰西行为短勾东行为长勾北行为短股南行为长股短勾并长勾以长股乘之得一十○万六千九百二十 短股并长股以短勾乘之得四千○八十相减余一十○万二千八百四十为勾股维乘差
又自之得一百○五亿七千六百○六万五千六百为三乘方实 长股内减二短勾余与长勾相减余二百七十一为股减勾差 长勾内减二短股余与长股相减余三百一十七为勾减股差 股减勾差与勾减股差复相减余四十六以乘勾股维乘差得四百七十三万○六百四十为从方 股减勾差与勾减股相乘得八万五千九百○七 长短勾并与长短股并相乘又倍之得二十二万○三百二十倍勾股维乘差得二十○万五千八百六十 三数相并得五十一万一千九百○七为从一廉长短勾并得二百一十六又四之得八百六十四 倍股减勾差得五百四十二 二数相并得一千四百 六为从二廉作带从方廉开三乘方法除之得半径带从方廉开三乘方曰置所得三乘方积为实以从方廉约之初商得一百 置一于左上为法置一乘从一廉得五千一百一十九万○七百置一自之以乘从二廉得一千四百○六万置一自乘再乘得一百万为隅法 并从方廉
隅共七千○九十八万一千三百四十为下法与上法相乘除实七十○亿九千八百一十三万四千余积三十四亿七千七百九十三万一千六百为次商之实
倍从一廉得一亿○二百三十八万一千四百三因从二廉得四千二百一十八万 四因隅法得四百万 初商自之 六因得六万 初商三之以乘下廉得四十二万一千八百相并加入从一廉得九十九万三千七百○七为上廉 初商四之带从二廉得一千八百○六为下廉次商二十 置一为法 置一乘上廉得一千九百八十七万四千一百四十 置一自之以乘下廉得七十二万二千四百并方廉隅共一亿七千三百八十九万六千五百八十为下法与上法相乘除实尽
或作初商一百 置一为法 置一乘从一廉置一自之以乘从二廉 置一自乘再乘为隅法并从方廉隅共七千○九十八万一千三百四
十为下法与上法相乘除实七十○亿九千八百一十三万四千余实三十四亿七千七百九十三万一千六百为次实 四因隅法得四百万为方法 初商自之 六因得六万为上廉 初商四之得四百为下廉 次商二十 置一于左次为上法 倍初商加次商得二百二十以乘从一廉得一亿一千二百六十一万九千五百四十初商三之并初次商因之得三万六千 次商自之得四百共三万六千四百以乘从二廉得五千一百一十七万八千四百 以两从廉并入从方共一亿六千八百五十二万八千五百八十为从置一乘上廉得一百二十万 置一自之以乘
下廉得一十六万 置一自乘再乘得八千为隅法并方廉隅共五百三十六万八千带从共一亿七千三百八十九万六千五百八十为下法与上法相乘除实尽
此法分别从方从廉明白故重録附之
出西门南行二百二十五步有塔出北门东行六十四步望塔正居城之半问城径
释曰此以不及底勾与不及边股测望南行二百二十五步与高股同即半径为勾之股东行六十四步与平勾同即半径为股之勾也当以平勾高股立法为是但其望塔当城之半故附底勾边股条下术曰二行相乘即半径筭
乙从城外西南坤隅南行三百六十步甲出北门东行二百步见之问城径
释曰此以底勾大差股立法测望乙从坤隅南行大差股也甲东行底勾也底勾为城北东半勾大差股为城西南虚股
术曰二行相乘得七万二千倍之得一十四万四千为实以南行三百六十为从方作带从开平方法除之得全径
带从开平方法见一卷
乙出南门直行一百三十五步甲出北门东行二百步见之问城径