乾坤体义 - 第 3 页/共 7 页

或问曰有夘酉时月蚀者而日月俱现地平上以为地形中隔似不如是曰春分至秋分日出地恒在夘正前故月朢对酉正后秋分至春分日出恒在夘正后故月朢对酉正前夫月蚀特于朢朢时日月何得而同现地平上乎盖其半沉半吐之际人见双形实非并现倘月蚀时日月全见地平上必月或在西始入地或在东将出地而海水影映并水土之气发浮地上现出月影此时月体实在地下为地所隔此理可试于空盂若盂底内置一钱逺视之不见试令斟水满之钱不上移而宛可见焉盂邉既隔吾目则吾所见非钱体乃其影耳兹岂非月在地下而景现地上之喻乎或又谓月影映水可见日影映水亦可见地上何独言月不言日曰日体极大违地极逺此理喻日于义不合图设于上以便览观   论日球大于地球   夫日球于地球或大或等或小焉如云大则无用辨等并小不可不辨论曰日球或小或等于地球地球之影宜无尽【在第四第六题】则必能及火木土星并二十八宿而蚀之矣然未见火木土星并二十八宿之蚀或曚之则地球影不臻其体而有尽焉既有尽则日球不可谓或小或等于地球者而必大也况地影克至三星二十八宿之体必每夜宜见蚀曚星之大半而竟不见之也此理设图于后以细玩焉 <子部,天文算法类,推步之属,乾坤体义,卷中>   又地球之影益逺地益小则日球大于地球者也【在第四题】若非益逺地益小或益大或等焉则影至星而非见星之蚀必见其甚曚焉又如月在龙头其离地逺如在龙尾其离地近也然月在龙头其蚀时短在龙尾其蚀时长则地影益逺益小着矣   论地球大于月球   然地球大于月球何騐之耶论曰地影依前论为一尖圆体而地之半球为底之环也月球蚀时全在其尖体之内而久行其中【乃其全黒之时】则月球之径甚小于地球径也【在第三题】此以日月蚀论之若量法又可以测二形之大而较之焉今畧举是姑明其意云尔   附徐太史地圜三论   西泰子之言天地圆体也犹二五之为十也【地形之圜乃欧罗巴诸儒千年定论非窦创为是说】或疑焉作正戏别三论解之正论曰古法北极出地三十六度此自中州言耳唐人云南北相去每三百五十一里八十步而差一度宋人云自交南至于岳台六千里而差十五度此定説也夫地果平者即南北相去百亿万里其北极出地之度宜恒为三十六不能差毫末也犹山髙千尺以周髀量之自此山之下稍移之平地数十里外宜恒为千尺不能差毫末也以郭若思之精辨南北测騐二万里北极之差至五十度而不悟地为平体移量北极之不能差毫末何也又因而抑札马鲁丁使其术不显何也戏论曰嵩髙之下北极出地三十六度自此以北每三百五十一里八十步而差一度则嵩髙之北一万八千九百六十六里正当北极之下矣近世浑天之说明即天为圆体无疑也夫天为圆体地能为平体北极又能为逓差则以周髀计之北极之下自天至地才一万三千八百二十九里而已次以弧矢截圆法计之则北极之下更北行四千四百七十六里有竒而地与天俱尽也合计之即自嵩髙以北二万三千四百四十里有竒而地与天俱尽也倍之则东西广南北袤各四万六千八百八十五里有竒而地与天俱尽也此三者以为可不可也别论曰扬子云主盖天桓君山诎之是也然盖天能知地平则北极不能为差故云北极之下高于中国六万里但知其说者又不能为圆天为圆天则髙于中国六万里之处既与天相及矣故曰天之北极髙于四周亦六万里斜倚之令天与地不相及也若言圆天而不言圆地政不足以服周髀   乾坤体义卷中 <子部,天文算法类,推步之属,乾坤体义>   钦定四库全书   乾坤体义卷下   明 利玛窦 撰   容较图义   万形有全体目视惟一面即面可以推全体也面从界显界从线结总曰边线邉线之最少者为三邉形多者四邉五邉乃至千万亿邉不可数尽也三邉形等度者其容积固大于三邉形不等度者四邉以上亦然而四边形容积恒大于三邉形多邉形容积恒大于少邉形恒以周线相等者騐之邉之多者莫如浑圜之体浑圜者多邉等邉试以周天度剖之则三百六十邉等也又剖度为分则二万一千六百邉等也乃至秒忽毫厘不可胜算万形愈多邉则愈大故造物者天也造天者圜也圜故无不容无不容故为天试论其槩   凡两形外周等则多邉形容积恒大于少邉形容积假如有甲乙丙三角形其邉最少就底线乙丙两平分于丁作甲丁线其甲乙甲丙两腰等丁乙丁丙又等甲丁丙角甲丁乙角皆等则甲丁线为乙丙之垂线【几何原本一卷八】次作甲戊丙丁直角形而甲戊与丁丙平行戊丙与甲丁平行视前形增一角者【一卷四又三十六】既甲丁丙甲丁乙两形等而甲丙戊与甲丁乙亦等【一卷三十四】则甲丁丙戊方形与甲乙丙三角形自相等矣以周论之其甲戊戊丙丙丁甲丁四邉皆与乙丁相等甲丙邉为其线稍长试引丙戊至己引丁甲至庚皆与甲丙甲乙线等而作庚丁己丙形与甲乙丙三角形同周则赢一甲庚己戊形故知四邉形与三邉形等周者四邉形容积必大于三邉形   凡同周四直角形其等邉者所容大于不等邉者假有直角形等邉者每邉六共二十四其中积三十六另有直角形不等邉者两邉数十两邉数二其周亦二十四与前形等周而其邉不等故中积只二十又设直角形其两邉各九其两邉各三亦与前形同周而中积二十七又设一形两邉各八两邉各四亦与前同周而中积三十二或设以两邉为七以两邉为五亦与前同周而中积三十五是知邉度渐相等则容积固渐多也   试作直角长方形令中积三十六同前形之积然周得三十与前周二十四者迥异今以此周作四邉等形则中积必大于前形 <子部,天文算法类,推步之属,乾坤体义,卷下>   凡同周四角形其等邉等角者所容大于不等邉等角者   设甲乙丙丁不等角形从丙丁各作垂线又设引甲乙至己作戊丙己丁四角相等形【一卷三十五】与不等角形同底原相等【一卷十九又三十四】甲乙亦同戊己而乙丁及甲丙线则赢于己丁戊丙线是甲乙丙丁之周大于戊丙己丁之周试引丁己至辛与乙丁等引丙戊至庚与甲丙等而作庚丙辛丁形则多一庚戊辛己形因显四等角形大于不等角形   以上四则见方形大于长形而多邉形更大于少邉形则圜形更大于多邉形此其大畧若详论之则另立五界説及诸形十八论于左   第一界等周形   谓两形之周大小等   第二界有法形   谓不拘三邉四邉及多邉但邉邉相等角角相等即为有法其攲邪不就规矩者为无法形   第三界求各形心   但从心作圜或形内切圜或形外切圜皆相等者即系圜与形同心   第四界求形面   谓周线内所容人目所见乃形之一面   第五界求形体   如立方立圜三乗四乗诸形乃形之全体